Joint Representation Learning for Multi-Modal Transportation Recommendation
نویسندگان
چکیده
منابع مشابه
MRLR: Multi-level Representation Learning for Personalized Ranking in Recommendation
Representation learning (RL) has recently proven to be effective in capturing local item relationships by modeling item co-occurrence in individual user’s interaction record. However, the value of RL for recommendation has not reached the full potential due to two major drawbacks: 1) recommendation is modeled as a rating prediction problem but should essentially be a personalized ranking one; 2...
متن کاملPlanning Multi-Modal Transportation Problems
Multi-modal transportation is a logistics problem in which a set of goods have to be transported to different places, with the combination of at least two modes of transport, without a change of container for the goods. The goal of this paper is to describe TIMIPLAN, a system that solves multi-modal transportation problems in the context of a project for a big company. In this paper, we combine...
متن کاملLearning Multi-Modal Word Representation Grounded in Visual Context
Representing the semantics of words is a long-standing problem for the natural language processing community. Most methods compute word semantics given their textual context in large corpora. More recently, researchers attempted to integrate perceptual and visual features. Most of these works consider the visual appearance of objects to enhance word representations but they ignore the visual en...
متن کاملImage-Text Multi-Modal Representation Learning by Adversarial Backpropagation
We present novel method for image-text multi-modal representation learning. In our knowledge, this work is the first approach of applying adversarial learning concept to multi-modal learning and not exploiting image-text pair information to learn multi-modal feature. We only use category information in contrast with most previous methods using image-text pair information for multi-modal embeddi...
متن کاملCommon Representation Learning Using Step-based Correlation Multi-Modal CNN
Deep learning techniques have been successfully used in learning a common representation for multi-view data, wherein the different modalities are projected onto a common subspace. In a broader perspective, the techniques used to investigate common representation learning falls under the categories of canonical correlation-based approaches and autoencoder based approaches. In this paper, we inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33011036